Preliminary communication

Trimethylphosphine complexes of iron(III) tetraphenylporphyrin; ¹H NMR studies of the electronic effect in paramagnetic haems

G. Simonneaux * and P. Sodano

Laboratoire de Chimie des Organométalliques, UA CNRS 415, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France)

(Received April 5th, 1988)

Abstract

New low-spin ferric tetraphenylporphyrin-phosphine complexes were prepared in order to undertake a study by ¹H NMR spectroscopy of the sensitivity of the trimethylphosphine ligand to the *trans* effect, and to improve the understanding of the electronic structure of PMe₃-ligated haemo-proteins.

The binding of phosphine by haemoproteins is a subject of much current interest [1]. It has been reported that PMe₃, which is considerably bulkier than O₂ or CO, can serve as a sensitive ¹H NMR probe of the ligand binding in met-myoglobin (met-Mb) and in met-haemoglobin (met-Hb) [2]. For instance, separate ¹H NMR signals can be observed for the PMe₃ ligands bound to the α and β chains in met-Hb [2]. In order to provide information about the *trans*-electronic effect on trimethylphosphine binding, we have synthesised tetraphenylporphyriniron(III)-PMe₃ complexes. The spectroscopic properties (¹H NMR) of these complexes are compared with those of haemoprotein adducts.

Previous studies on model complexes have been undertaken at low-temperature on dissolved species [3,4], and a major difficulty that we have encountered in preparing trimethylphosphine ferric porphyrin derivatives has been the autoreduction of ferric porphyrin [5]. This difficulty has been circumvented by use of Fe(TPP)ClO₄ as starting material [6]. Addition of two equivalents of PMe₃ to 0.2 g of Fe(TPP)ClO₄ (0.26 mmol) in toluene (20 cm³) under argon at 20 °C resulted in rapid formation of Fe(TPP)(PMe₃)₂ClO₄. The solution was set aside overnight and the fine crystals then filtered off (yield 88%). The electronic spectrum of Fe(TPP)(PMe₃)₂ClO₄ exhibits hyperspectra with two Soret bands (λ_{max} at 359 nm (ϵ 99 m M^{-1} cm⁻¹) and (λ_{max} at 440 nm (ϵ 128 m M^{-1} cm⁻¹)) and a band at 618 nm (ϵ 45 m M^{-1} cm⁻¹). Hyperporphyrin spectra have been reported previously [3] for dimercaptide hemin and mercaptide-phosphine-hemin complexes [3]. Mixed

Fig. 1. ¹H NMR spectra of $Fe(TPP)(PMe_3)_2ClO_4$ (1) (a) and $FeTPP(PMe_3)(1-MeIm)ClO_4$ (2) (b). All spectra were obtained in CD_2Cl_2 at 20 °C. Assignments of the various resonances are indicated: S indicates the residual solvent peak and X indicate an impurity peak. Tetramethylsilane was used as internal reference.

hexacoordinated derivatives with PMe₃ and nitrogen bases as axial ligands have been synthesised; for example, progressive addition of 1.2 equivalents of PMe₃ in CH₂Cl₂ (5 cm³, 20 °C, under argon) to 0.3 g of Fe(TPP)(1-MeIm)₂ClO₄ (0.32 mmol) [6] in CH₂Cl₂ (15 cm³) gave Fe(TPP)(PMe₃)(1-MeIm)ClO₄, which was precipited by additional hexane (40 cm³). The yield of the CH₂Cl₂ solvate was 0.25 g (78%), λ_{max} at 422 nm (ϵ 131 m M^{-1} cm⁻¹), 541 nm (ϵ 47 m M^{-1} cm⁻¹) and 568 nm (ϵ 46 m M^{-1} cm⁻¹).

The ¹H NMR spectra of $Fe(TPP)(PMe_3)_2ClO_4$ (1) and $Fe(TPP)(PMe_3)(1-MeIm)ClO_4$ (2) are shown in Fig. 1. The signal lying far upfield (ca. -20 ppm) can be assigned to the pyrrole proton atoms on the basis of data for low-spin porphyriniron(III) complexes [7]. The PMe₃ signal was unambiguously assigned by examination of $P(CD_3)_3$ complexes. Other information pertinent to assignments was gained from selective frequency decoupling experiments and by consideration of the relative integrations.

In order to characterize the electronic structure of the porphyriniron phosphine, the chemical shifts were analysed by empirical methods [7]. The isotropic chemical shifts were calculated by using diamagnetic $Fe(TPP)(PMe_3)_2$ and $Fe(TPP)(PMe_3)(1-MeIm)$ complexes as references [8]. The geometric factor calculated values of the different porphyrin proton sites of $Fe(TPP)(PMe_3)_2ClO_4$ (1) and $Fe(TPP)(PMe_3)(1-MeIm)ClO_4$ (2), and ESR data were used to determine the corresponding dipolar shifts. We used the following well-known equation [7]:

$$(\Delta H/H)_{\rm dip} = -\frac{\beta^2 S(S+1)}{9 \, {\rm k} T} \left(g_{\parallel}^2 - g_{\perp}^2\right) \frac{3 \, \cos^2 \theta - 1}{R^3}$$

The effective axial field permits the use of this equation with $g_{\perp} = [1/2(g_{xx}^2 + g_{yy}^2)]^{1/2}$ and $g_{\parallel} = g_{zz}$. ESR data measurement at 140 K in CH₂Cl₂ yield the

Table 1

Proton type	Fe(TPP)($PMe_3)_2ClO_4$		Fe(TPP)(PMe ₃)(1-MeIm)ClO ₄					
	$\overline{(\Delta H/H)}$	$^{a}(\Delta H/H)_{\rm iso}$	$b(\Delta H/H)$	$_{\rm dip}(\Delta H/H)_{\rm con}$	$(\Delta H/H)$	$^{a}(\Delta H/H)_{\rm iso}$	$c(\Delta H/H)$	$D_{\rm dip}(\Delta H/H)_{\rm con}$	
<i>o</i> -H	5.00	-2.91	-2.16	-0.75	5.03	-2.75	- 2.77	0	
m-H	6.78	-0.75	-0.92	+ 0.23	6.26	-1.23	- 1.26	0	
<i>p</i> -H	6.36	-1.17	-0.82	-0.29	6.2	-1.23	- 1.13	0	
pyrr-H	-19.6	-27.81	-4.08	-23.73	- 19.45	-27.34	- 5.24	-22.10	
PMe ₃	- 5.00	-2.39	+ 10.93	-13.32	- 12.95	-10.08	14.05	- 24.10	
Me(Im))				15.03	13.43 ^a	6.12	7.31	
CH(Im))				12.18				
					- 4.99				
					-15.72				

Observed chemical shifts and separation of the isotropic shift into contact and dipolar contribution for $Fe(TPP)(PMe_3)_2ClO_4$ (1) and $Fe(TPP)(PMe_3)(1-MeIm)ClO_4$ (2)

^a Chemical shift in ppm at 20 °C with Me₄Si as internal reference (CD_2Cl_2) . ^b Isotropic shift with diamagnetic Fe(TPP)(PMe_3)₂ complex as reference [8]. ^c Isotropic shift with diamagnetic Fe(TPP)(1-MeIm) complex as reference [8]. ^d Isotropic shift with diamagnetic Fe(TPP)(1-MeIm)₂ complex as reference [1].

following g values for 1: 2.687, 2.088, 1.680 and for 2: 2.890, 2.286, 1.542. The geometric factor for PMe₃ was calculated by use of structural data from our X-ray study of Fe(TPP)(PMe₂Ph)₂ [8]: $(3 \cos^2 \theta - 1)/r^3 = 0.01837$ Å⁻³. The results are listed in Table 1. Both of the phosphine-complexes 1 and 2 have pyrrole proton resonances at very high-field ($\delta \approx -19$ ppm); this shift is typical of iron(III) in a low spin state and is attributed to the strong field character of the phosphine ligand. The large upfield pyrrole proton contact shifts agree with charge transfer from the porphyrin $3e\pi$ orbitals to the d_{xx} and d_{yx} orbitals of the metal [7].

Detailed analysis of PMe₃ isotropic shift for $Fe(TPP)(PMe_3)_2ClO_4$ (1) suggests that the contact shift and the dipolar shift have similar magnitudes but opposite signs. Thus the coordination of an alkylphosphine to the iron center leads to a complex with unpaired spin density on the methyl group of PMe₃. The influence of axial imidazole is clearly demonstrated in Fig. 1 by the presence of PMe₃ proton signal at stronger field (≈ -13 ppm). On going from Fe(TPP)(PMe₃)₂ClO₄ to Fe(TPP)(PMe₃)(1-MeIm)ClO₄, the dominant hyperfine shift change observed for PMe₃ must involve the contact interaction (Table 1). This finding favors the interpretation that spin transfer in both species involves iron $\rightarrow PMe_3\pi$ charge transfer, since this mechanism would be enhanced by the presence of an imidazole acting as a π donnor [9,10]. From consideration of the chemical shifts of PMe₃ protons in the present complex 2, it seems reasonable to expect that the PMe_3 ligand in low-spin ferric haemoproteins should resonate upfield of the diamagnetic region. For met-myoglobin-PMe₃, and met-hemoglobin-PMe₃, proton resonances have been detected at ≈ -12 ppm (model complex 2, $\delta = -13$ ppm) which can be safely attributed to PMe₃ [2]. The highfield shift of PMe₃ can thus be used as a probe for the haeme environments in haemoproteins. Application of this probe is currently under way.

References

¹ A. Bondon, P. Petrinko, P. Sodano and G. Simonneaux, Biochem. Biophys. Acta, 872 (1986) 163; A. Bondon, P. Sodano, G. Simonneaux and C.T. Craescu; ibid., 914 (1987) 289.

- 2 G. Simonneaux, A. Bondon and P. Sodano, Inorg. Chem., 26 (1987) 3636.
- 3 H.H. Ruf, P. Wende and V.I. Ullrich, Inorg. Biochem., 11 (1979) 189.
- 4 D. Mansuy, W. Duppel, H.H. Ruf and V.I. Ullrich, Hoppe-Seyler's Z. Physiol. Chem., 355 (1974) 1349.
- 5 G. La Mar and J. Del Gaudio, Bioinorg. Chem., 2 (1977) 207.
- 6 C.A. Reed, T. Mashiko, S.P. Bentley, M.E. Kastner, W.R. Scheidt, K. Spartalian and G. Lang, J. Am. Chem. Soc., 101 (1979) 2948.
- 7 G. La Mar and A.F. Walker, in D. Dolphin (Ed.), The Porphyrins, Academic Press, New York, 4 (1978) 61.
- 8 G. Simonneaux and P. Sodano, J. Chem. Soc., Dalton Trans., in press.
- 9 T.G. Traylor and A.P. Berzini, J. Am. Chem. Soc., 102 (1980) 2844.
- 10 G.N. La Mar and V.P. Chacko, J. Am. Chem. Soc., 104 (1982) 7002.
- 11 J.D. Satterlee and G.N. La Mar, J. Am. Chem. Soc., 98 (1976) 2804.